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Absiract. A formalism of time-smoothed total transition probabilities and their rates is 
developed which employs Laplace averages of these quantities. Under conditionspertinent 
to scattering processes, the Laplace-average formalism is shown to yield results equivalent 
to those obtained from a stationary-state formalism. Rigorous lower and upper bounds are 
obtained for the Laplace-averaged quantities which reduce to equalities for two-level 
systems. The lower bounds appear to be potentially useful for estimating lower bounds for 
total cross sections of various processes. 

1. Introdaction 

Most fundamental theoretical descriptions of physical and chemical systems at the 
present time involve quantities which, despite their being formally exact, necessitate 
approximations for their evaluation. In such cases, there is evident merit in having 
procedures of approximation which can be carried out and which provide some means 
of assessing the adequacy of the approximated quantities in theoretical terms. Even if a 
full theoretical assessment of their adequacy is not feasible, approximated quantities 
that demonstrably serve to put bounds-either lower or upper-n their exact counter- 
parts can be useful. 

Several such procedures for estimating some quantum-mechanical properties of 
systems (Weinhold 1972) and for estimating some of the properties of systems which 
are‘ in statistical mechanical equilibrium (Girardeau and Mao 1973, Golden 1974a, b) 
are now known. No comparable mathematical apparatus for estimating time- 
dependent properties of systems is yet available, although some progress has been made 
recently to alleviate this situation (Golden 1973, 1975, Platz and Gordon 1973). With 
this end in mind, the present paper provides a treatment of time-dependent total 
transition probabilities and their rates which culminates in providing expressions for 
both lower and upper bounds to time-smoothed values of these quantities. 

The following section provides an introduction to a formalism of time-smoothed 
total transition probabilities and their rates, which employs Laplace averages ( K O h  
and Luttinger 1957, Golden 1969) of these quantities, especially relating to their 
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equivalent experimental use. The next section establishes an equivalence beheen the 
results obtainable from the Laplace-average formalism and those obtainable from a 
stationary-state formalism pertinent to the description of scattering processes. several 
rigorous lower and upper bounds for Laplace-averaged total transition probab&ties 
and their rates are derived in the succeeding section, for conditions not necessarily 
restricted to those prevailing in scattering processes. In 0 5,  the bounds are Wmpared to 
the exact results obtained for a two-state system and some indication is given as to their 
possible use in other cases. 

2. Preliminary measnrabiIity considerations 

We will confine our attention to a Gibbsian ensemble of systems that is originally 
characterized by a statistical operator po corresponding to a pure state 

PA = Po ={Po}’, (2.1) 

Trpo=l .  (2.2) 

with (assuming that all traces to be considered exist) 

At any later time r, the evolution of the statistical operator is determined by 

which is von Neumann’s equation of motion (von Neumann 1955). H is the (time- 
independent) Hamiltonian of the system which, with no undue loss of generality, will be 
supposed to possess a purely discrete spectrum of eigenvalues that is bounded from 
below, no one of which is a limit-point of the others; the number of eigenvalues in any 
finite range is presumed to be finite, however large. The formal solution of equation 
(2.3) is 

PO) = U+(t)POU(O (2.4) 

where 

U(t) = exp{iH/h} 

so that 
(2.6) 

The probability that a system will be found at time t in the same state which 
characterized it initially is 

(2.7) 

The complementary probability that the system will then be found in some State other 
than the one which characterized it initially is 

Tr p(t) = Tr po = 1. 

p(t)  = Tr p(t)po. 

T(t)=l-P(t)= l-Trp(t)po 

while, clearly, its time rate-of-change is 

(2.8) 

. dT(t) aP0) T(t)=-= -Tr-Po. dt at  
(2.9) 
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~ ( t )  will be referred to as the total transition probability, while p(r) represents the total 
pmsitionprobability rate. Both are dynamical quantities requiring a detailed knowledge 
of p(t) so their evaluation is generally a formidable undertaking. 

In order to place the following analysis in its proper perspective, suppose that an 
experimenter is able to select a sub-ensemble consisting of N(t)  systems from the 
available Gibbsian ensemble of systems. Suppose also that he is capable of instantly 
measuring the number of systems n ( f )  which can be characterized as being in some state 
other than the original one, and that he is also able to directly measure li(r), the 
time rate-of-change of 4 t h  When done under quasi-closed conditions, the experi- 
menter arranges that 

N( t )  = No for all t (2.10) 

(fii(f))closed = NOf(t)* (2.11) 

and concludes that 

Alternatively, when done under quasi-steady state conditions, the experimenter 
arranges that 

N(t)  = N o  for all t (2.12) 

and concludes that 

(fi(t))steady = *OT(t)- (2.13) 

Both T(t)  and ?(t) are dynamical quantities, as noted earlier, whereas NO and fi0 are 
not. As a result, the measured r i ( r )  are not intrinsic properties of the system, but usually 
depend on how the experiments are performed. 

Inherent difficulties in evaluating T(t) or ?(t) theoretically can be alleviated to some 
extent if emphasis is given to the values that they attain for indefinitely large values of t, 
although caution is required since the quantities may possess no genuine asymptotic 
limit as t become indefinitely large (Golden and Longuet-Hi&s 1960, 
1964). For this reason, it proves useful to work with those time-smoothed U ~ W S  which 
are exemplified by the Laplace averages (Golden 1969) of the quantities. Explicitly, we 
shall be concerned with 

(2.14) 
m 

T([)  = (1 dt e-"T(t) 
0 

and 
.m 

(2.15) 

where, for the present, ( is a real positive quantity. 

menter will have no difficulty in working with their Laplace averages 
Instead of dealing with the direct-temporal behaviour of measured ri(t), an experi- 

(2.16) 

(2.17) 

(2.18) 
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In the previous terms, the long-term time-averaged behaviour of the 
involved is associated with sufficiently small values of 4'. Their initial behaviour is to be 
associated with sufficiently large values of 5. 

Bemuse of the difference in the experimental procedures that led to equations 
(2.17) and (2.18), there is no upnon' reason to expect that the respective G(() whichare 
measured will usually be the same. However, because of their non-dynamical character, 
both No and can be chosen to be functions of f so that they are equivalent. Thus, if 
identical long-term time-averaged behaviour is desired, it is only necessary that 

1im I(n'(())closed/(nl(f))steady) = 1. 
g+o+ 

Using integration-by-parts, equation (2.15) immediately yields 

(2.19) 

(2.20) 
so that a knowledge of either F(f)  or f(l) suffices to give the other immediately. Then 
from equations (2.14) and (2.15) and equations (2.17) and (2.18), equation (2.19) will 
be fulfilled if 

(2.21) 

In such cases, there is an evident equivalence resulting from appropriate uses that are 
made of the limiting values of the Laplace-averaged total transition probabilities or 
their rates. 

Essentially such an equivalence is obtained from the formalism of time-dependent 
scattering theory, whereby either transition probabilities or their rates are used to 
determine demonstrably identical cross sections of processes of interest (Goldberger 
and Watson 1964). Indeed, with appropriate choices of No((), fro(() and S, the 
Laplace-average formalism considered here gives the aforementioned cross section 
equivalence in detail-though we will present no proof of it. For our purposes, the 
relationship expressed by equation (2.20) is central to this equivalence and 
approximation that may be made later to either one of T(()  or f(() will preserve it. 

3. Eqnivalence between Laplace-average and stationary-state formalisms 

Before exeoiting the Laplace-average formalism to produce expressions that bound 
T( l )  and T(() of equations (2.14) and (2.15), we digress to establish an important 
connection with versions of transition probability theory which make use of a 
stationary-state formalism (Mott and Massey 1965, Wu and Ohmura 1962). 

For this purpose, we first evaluate the Laplace average of equation (2.3), obtaining 
(3.1) i f "  - Pol = [H, W ) I  

where 
.m 

~ ( 5 )  = dt e-"p(t). 
0 

(3.2) 

We next evaluate equation (2.14), making use of equation (2.8), to obtain 
(3.3) F(()  = 1 -Tr poR(J). 
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Upon evaluatingR(b) in a complete orthonormal basis >}, of eigenfunctions of 
H (which however need not be unique) with associated energy eigenvalues {Em), we 
obtah 

whereupon 

(3.4) 

This last expression results from the fact that F(.cS) is real. We now express po in 
representative form, namely 

Po = 140)(401 (3.6) 
and, without loss of generality, choose the H-eigenfunction basis to be one which also 
satisfies 

( l t m  l40)(dol +a) = (+M1+0) (4o lrG'M)~mn~~-  (3.7) 
This is always possible when the energy eigenvalue spectrum has degeneracies and is 
automatically fulfilled otherwise. Consequently equation (3.5) yields 

each summation now involving only a single eigenstate for each energy eigenvalue. 
When f becomes vanishingly small, we obtain 

In terms of a complete, orthonormal (but not necessarily unique) basis ( I 4 ~ k ) )  which 
includes the original Ido), we may evidently write 

T(o+> =I I<J/M140>12 1 [($k/$M)12* (3.10) 

By construction, the probability distribution in energy associated with the original state is 
given by the set (I(+Ml+o)J2}, so that the fraction of energy eigenvalues not exceeding E 
to be associated with the original distribution is 

M k #O 

f o ( ~ )  + e(E - ~ ~ ) l ( ~ / ~ l 4 ~ ) l ~  
M 

where e ( x )  is the Heaviside unit-function of its argument. By rewriting 

we can then express equation (3.10) as a Stieltjes integral: 
+m 

k#O 

(3.11) 

(3.12) 

(3.13) 
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In &cumstances where the energy eigenvalue spectrum is sufficiently dense for the 
quantities in equation (3.13) to be adequately represented by continuous functionsofE, 
an application of the mean-value theorem then gives 

(3.14) 

where JI&) is an appropriate energy eigenstate, with eigenvalue E". (The asymptotic 
designation of the equality here merely calls attention to the condition of spectral 
density that has been invoked.) 

the 
probability of finding a system in an appropriate state (Dirac 1958) different from ( a d  
orthogonal to) the initial state 140) if it were known to be in the stationary state 
a consequence, and despite the rather small likelihood of generally finding a system 
truly to be in an eigenstate of the energy, the long-term time-averaged total transition 
probability can always be expressed in a form that is entirely equivalent to that expected 
from a stationary-state formulation whenever the relatively innocuous condition of 
denseness of the eigenvalue spectrum that has been invoked in obtaining equation 
(3.14) does prevail. 

Just such an equivalence is well-known (Jordan 1962, Wu and Ohmura 1942) for 
the conditions pertinent to a description of scattering processes which, however, are 
more stringent than those invoked here (Jordan 1962). In such cases, the mean energy 
of the system is presumed to be known with an arbitrarily small uncertainty, namely 

(3.15) 

A typical term in the sum of equation (3.14) can be recognized immediately 

A0 = (401 (H- (dolHl 4o>l21 40) << 8 

where S is arbitrarily small, but positive. By invoking equation (3.7), introducing 

(4olHldo) =E0 (3.16) 

and suitably rearranging the results of substitution into equation (3.13, we get 

(3.17) 

This enables us to conclude that an energy eigenfunction 
circumstances such that (Kato 1949, Temple 1928, Weinstein 1932a, b) 

exists for the present 

(cpoll-rlcpo)-~ ( $ E O I m w  4 (cpoJHJcpo)+ 8 (3.18) 

and it has an associated energy eigenvalue arbitrarily close in value to the original mean 
energy. In t h i s  case, IW) of equation (3.14) will be the stationary state of the system 
that 'best' approximates the time-dependent function evolving from the @veri 140)- 
(Despite the language, however, we do not here require that such an asymptotic hit  
should actually exist in order to obtain the equivalence.) 

4. Lower and upper bounds for Laplace-averaged total transition probabilities and 
their rates 

Assured by the analysis of the preceding sections that the Laplace-average formalism 
does produce results able to be obtained with other formalisms that are known to be 
exact-under conditions that are pertinent to their being obtained-we now Proceed to 
determine some rigorous lower and upper bounds for F(5) and f(5) 
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For this purpose, we fmt rearrange equation (3.8) to yield 

~n an alternative form, making use of equation (3.9), we further obtain 

(4.1) 

We now express the two preceding equations as follows: 

F(c)= Im 0 dx e-x*z‘zx M N  2 e-x(EM-EN)2 (4.3) 

and 

(4.4) 
Any procedure which is capable of producing upper or lower bounds to the integrands 
which are involved will yield appropriate bounds to F(f) ,  as we now show. 

4.1. A lower bound for ‘ ( C )  
A lower bound to the sum in equation (4.3) can be obtained from the well-known 
inequality (Hardy et a1 1934) 

We rearrange the terms in equation (4.3) to be in agreement with equation (4.6) and 
obtain 

C C (EM - EN)~I( +MI +o>I’I<ICi”+o>I’ e-*(E~-E~)2 
M N  

(4.7) 
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(3.15), namely 

b=(401w-E?2140) (4.10) 
and the quantity 

ro = ( 4 0 ~ ( ~ -  ~9~14,) + 3@d2, (4.11) 
incorporating them into equation (4.7) and carrying out the integration called for in 
equation (4.3), we obtain 

(4.12) 

We note, in passing, that despite the lower-bound nature of this expression, it gives 
the exact limiting asymptotic ([+ 00) behaviour expected for T(T(5): 

lim h 2 1 2 T ( ~ )  = 243. 
i + m  

This can be established from equations (4.1), (4.8) and (4.10). 

(4.13) 

4.2. A n  upper bound for T(5) 

A procedure completely analogous to that described can be applied to the sum in 
equation (4.4). Omitting the details, for the sake of brevity, we can obtain 

(4.14) 

Here again, the exact limiting asymptotic ([+ CO) behaviour expected for p( l )  is 
obtained. By contrast with the lower-bound expression, however, the exact limiting 
asymptotic (T(5+0+) behaviour expected for T([)-in this case, an identity-is also 
obtained. 

4.3. A lower bound for { f( f)}max 

From the foim exhibited in equation (4.1), it is evident that T([)  is a monotonic 
decreasing function of 5’. Consequently, we can anticipate that, by equation (2.20) 

(4.15) 

th? Laplace-averaged total transition probability rate will reach a maximum value 
{T([)}max at an appropriate value of l. 

Because of equation (4.15), any lower bound for T ( f )  will immediately yield dower 
bound for f(6). Because of the sense of the inequality, it then follows that mY 
n”m value for the lower bound cannot exceed {f([)lmax. Upon substituting 
equation (4.12) into equation (4.15) and determining the value of 5 which m a d e s  
the result, we will obtain 

(4.16) 

4.4. An  upper bound for {f([)}max 
The Same kind of argument which has been used to get equation (4.16) can be usedwith 
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equation (4.14) to obtain 

(4.17) 

5. Some possible uses of the  bo^& 

m e  essential simplicity of the lower and upper bounds which have been obtained for 
the Laplace-averaged total transition probabilities and their rates suggest that their 
utilization may be effected without the need for making excessively elaborate computa- 
tions. The present section will illustrate some of the questions they may be. useful in 
answering. 

5.1, Two-level systems 

One primary question relates to the quantitative adequacy of the bounds which have 
been obtained. The answer to this question generally must be expected to depend upon 
the system to which the bounds are applied-with one exception. This exception arises 
when the energy eigenvalue spectrum consists of only two values (each of which may 
however be degenerate), in which case the bounds we have obtained become equal. 

To show this, we note that the sum in equation (4.1) will reduce to just a single term 
when there are only two energy eigenvalues: 

where the label (11) denotes the two-level nature of the system being considered. By 
transcribing equations (4.8)-(4.1 l), we can venfy for the present case that 

which is identical to the equality expressed by equation (4.12). It may also be written as 

Which is identical to the equality expressed by equation (4.14). 
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In the Sense that the bounds obtained in equations (4.12) and (4.14) become equd 
for wo-level systems, the essence of the inequality which has led to them is to ascrib a 
@eudo-two-level’ character to the Laplace-averaged total transition probabiliv for a 
general system. From this viewpoint, inequalities which attempt to ascribe a ‘pseudo- 
N-level’ character to the quantities of interest may merit examination. 

5.2. Bounds to total cross sections 

Although it has been assumed that the system of interest possesses a purely discrete 
energy eigenvalue spectrum, the Laplace-average formalism we have considered may 
nevertheless cope with situations in which there is a continuum present. Formally, this 
merely requires an appropriate transcription of the expressions which have been 
obtained. 

This can be accomplished by regarding the Hamiltonian of a system which d e s  
possess a continuum of energy eigenvalues as the limit of a class of others which do not. 
Thus, by working with such Hamiltonians which confine the system to large, finite 
regions of space, we may suppose that their energy eigenvalue spectra are purely 
discrete. Then, by suitably extending the regions indefinitely, with an appropriate 
implicit modification of the pertinent Hamiltonians, the actual energy eigenvalue 
spectrum of the system-including any continua-may presumably be attained. At any 
intermediate stage, the bounds we have obtained apply without modification and their 
limiting values may be taken to be the bounds for systems which support continuous 
energy eigenvalue spectra. 

represent a non-localized 
initial state of a single particle which is nevertheless confined to a large finite region of 
space, of volume V, and impinges on a fixed scattering centre having an interaction 
energy of finite range, For distances su5ciently remote from the scattering centre, we 
suppose that represents the particle as having a fixed value of its momentum p.  In 
addition, we suppose that the initial state of the system is associated with a flux F of the 
particle incident on the scattering centre, defined by 

F = p / m V .  (5.8) 

To make this clear, and for the sake of simplicity, let 

The Hamiltonian of the system may be represented by 

P within V, P L  H = - +  V(P), 
2m 

(5.9) 

m being the mass of the particle, and r being its position; V(r) is the interaction of the 
particle with the scattering centre. The initial state may be represented by 

(5.10) 140) = Ixp>/ 
where 

as r becomes sufficiently large, and 

(xplxp) = v. 

(5.11) 

(5.12) 

In the foregoing terms, a time-smoothed total cross section that is associated with the 
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tansition undergone by the system from its initial state is defined by 

*(l)= lim { f ( [ ) / F } .  
V-m 

(5.13) 

By equations (4.16) and (4.17), the cross section has a maximum value which is 
bounded from both above and below: 

we now suppose that the choice of 140) and H is taken so that 

lim VAo= ( X , ~ ( H - E O ) ~ I , ~ ~ ) < O ~  
v-m 

(5.14) 

(5.15) 

lim m(O+) = To < CO 
v-m 

whereupon equation (5.14) yields 

With simple choices €or V(r)  and Ix,), it should not be difficult to evaluate the 
right-hand side of equation (5.16). The presence of To in the left-hand side makes 
evaluation of the upper bound impractical. With somewhat greater computational 
effort being entailed, the foregoing quantities may be chosen so as to discriminate 
between various kinds of scattering processes, e.g., elastic against inelastic, and to 
obtain lower bounds for the (time-smoothed) total cross sections of these processes. 

6. Conclusions 

Rigorous lower and upper bounds have been obtained for the Laplace averages of 
be-dependent total transition probabilities and their rates, the essence of which is to 
impose a 'pseudo-two-level' character upon these quantities. The lower bounds appear 
to have some potential utility in estimating total cross sections of processes without 
excessive computational effort. 
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